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This paper outlines an approximate solution for determining the pressure drop of fully-
developed, laminar, single-phase flow in microchannels of arbitrary cross-section. Using a
“bottom-up” approach, it is shown that for constant fluid properties and flow rate in fixed
cross-section channels, the Poiseuille number is only a function of geometrical characteris-
tics of the cross-section, i.e., perimeter, area, and polar moment of inertia. The model is
validated with experimental data for rectangular, trapezoidal, and triangular microchan-
nels. The model is also compared against numerical results for a wide variety of channel
cross-sections including: hyperellipse, trapezoid, sine, square duct with two adjacent round
corners, rhombic, circular sector, circular segment, annular sector, rectangular with semi-
circular ends, and moon-shaped channels. The model predicts the pressure drop for the
cross-sections listed within 8 percent of the values published.

Nomenclature

A = cross-sectional area, m2

a, b, c = channel cross section dimensions, m
Dh = hydraulic diameter 4A/P , m
E (·) = complete elliptic integral of 2nd kind
f = Fanning friction factor, 2τ/ρw2

Ip = polar moment of inertia, m4

I∗p = specific polar moment of inertia, Ip/A2

n = exponent, hyperellipse parameter
P = perimeter, m
Po = Poiseuille number
Re√A = Reynolds number, ρw

√
A/µ

w = fluid velocity, m/s
w = mean fluid velocity, m/s

Greek
α = aspect ratio trapezoidal duct, b/a
β = dimensionless parameter
ε = aspect ratio, 0 < c/b ≤ 1
ρ = fluid density, kg/m3

µ = fluid viscosity, kg/m.s
τ = wall shear stress, N/m2

φ = trapezoidal channel angle, rad
∆p = pressure drop, Pa
Γ (·) = gamma function
Subscripts√
A = sqrt of cross-sectional area, m

L = Lateral
∗Assistant Professor, Mem. AIAA,ASME.
†Professor Emeritus, Fellow AIAA,ASME.
‡Associate Professor, Mem. ASME.
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I. Introduction

Micro electromechanical systems (MEMS) fabrication technologies make it possible to build micro flu-
idic, silicon-based microchannels of different cross-sections in microsystems such as micro heat sinks, micro
biochips, micro reactors and micro nozzles. Microchannels are also being used as gas delivery systems and
heat exchangers in fuel cell technologies. Microchannels offer high surface area per volume ratios, high heat
transfer coefficients, and low thermal resistances.1 Microchannels can be produced directly by techniques
such as chemical etching on silicon wafers. As a result, the cross-section of the channels depends on a va-
riety of factors, such as the crystallographic nature of the silicon used. When a KOH-anisotropic etching
technique is employed, microchannels with fixed cross-sections are obtained.2 The shape of the cross-section
depends on the orientation of the silicon crystal planes. For instance, the microchannels etched in 100 or in
110 silicon will have a trapezoidal cross-section with an apex angle of 54.7◦ imposed by the crystallographic
morphology of the silicon or a rectangular cross-section, respectively.2

In recent years, a large number of experimental studies have focused on pressure drop of laminar flow
of liquids in microchannels with various cross-sections. However, published results are often inconsistent.
According to Pfund et al.,3 some of these authors conducted experiments in non-circular microchannels, but
compared their pressure drop data with the classical values of fRe=16 or 64 of circular pipes. Recently,
Liu and Garimella4 and Wu and Cheng5 conducted experiments in smooth rectangular and trapezoidal
microchannels, respectively. They reported that the Navier-Stokes equations are valid for laminar flow
in smooth microchannels (micron size dimensions). Some of the discrepancies observed in the published
data can be explained within the limits of continuum fluid mechanics and are due to wall roughness of
microchannels. Bahrami et al.6 developed an analytical model that predicts the observed trends in randomly
rough microchannels.
Finding analytical solutions for many practical singly-connected cross-sections, such as trapezoidal mi-

crochannels, is complex and/or impossible. In many engineering applications such as basic design and opti-
mization, it is often required to obtain the trends and a reasonable estimate of the pressure drop. Muzychka
and Yovanovich7, 8 introduced a geometrical mapping for predicting the pressure drop of fully-developed,
laminar flow in non-circular channels; in which non-circular ducts are mapped into equivalent rectangular
channels. They proposed the use of the square root of cross-sectional area as the characteristics length
instead of the hydraulic diameter. Comparing the rectangular mapping model with published numerical
results, they have demonstrated that the f Re√A, is a weak function of the geometry of the cross-section.
Their model,7 however, requires an equivalent rectangle which may not be applicable to the general case of
“arbitrary cross-section”.
The goal of this paper is to develop an accurate approximate model that can predict the pressure drop for

channels of arbitrary cross-section. The proposed model is compared with experimental and/or numerical
data for channels such as: rectangular, elliptical, triangular, hyperellipse, trapezoid, sine, square duct with
two adjacent round corners, rhombic, circular sector, circular segment, annular sector, rectangular with semi-
circular ends, and moon-shaped. After successful validation of the model with these channels, the analysis
can be expanded to the general case of arbitrary cross-section. The model estimates the pressure drop of
the cross-sections listed above within approximately 8% accuracy and provides a powerful tool for basic
designs, parametric studies, and optimization analyses required for applications such as in microchannel
heat exchangers and heat sinks.

II. Proposed Model

The assumptions of the present model can be summarized as:

• fully developed, steady-state, laminar, and continuum flow

• constant cross-sectional area A and constant perimeter P
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• constant fluid properties, i.e., liquid or low-speed gas

• negligible rarefaction, slip-on-the-wall and surface effects, body forces such as gravity, centrifugal,
Coriolis, and electromagnetic.

For such a flow, the Navier-Stokes equations reduce to the momentum equation. This is Poisson’s
equation in one or two dimensions depending on the cross-sectional geometry. In this case, the “source”
term in Poisson’s equation is the constant pressure drop along the length of the duct, ∆p. The governing
equation for fully-developed laminar flow in a constant cross-sectional area channel is:9

∇2w = 1

µ

dp

dz
with w = 0 on boundary (1)

where w and z are the fluid velocity and the flow direction, respectively. The boundary condition for the
velocity is the no-slip condition on the wall. The velocity profile is constant in the longitudinal direction;
thus the pressure gradient applied at the ends of the channel must be balanced by the shear stress on the
wall of the channel

τPL = ∆p A (2)

where

τ =
1

AL

Z
Γ

τ dAL

where AL is the lateral surface area of the duct and τ is the mean wall shear stress.
The proposed model is based on the analytical solution of the elliptical channel, not because it is likely

to occur in practice, but rather to utilize the unique geometrical property of its velocity solution.
In this section, first we show through analysis that the square root of the cross-sectional area is a “more

appropriate” choice for the characteristic length scale of arbitrary cross-section channels.
Using the analytical solution,10, 11 the mean velocity for the laminar fluid flow in elliptical ducts is:

w =
b2c2

4 (b2 + c2)

∆p

µ L
(3)

where b and c are the major and minor semi-axes of the cross-section, b ≥ c. An aspect ratio is defined for
the elliptical microchannel

0 < ² ≡ c
b
≤ 1 (4)

For an elliptical microchannel, the cross-sectional area and the perimeter are: A = πbc and P = 4b

E
¡√
1− ²2

¢
, where E (x) =

R π/2
0

p
1− x2 sin2 t dt is the complete elliptic integral of the second kind.

The mean velocity can be presented in terms of the aspect ratio, ²,

w =
c2

4 (1 + ²2)

∆p

µL
(5)

Combining Eqs. (2) and (5), the mean wall shear stress becomes:

τ =
4
¡
1 + ²2

¢
w

c2
µA

P
(6)

Substituting for the area and perimeter of the elliptical duct, the mean wall shear stress becomes:

τ =
π
¡
1 + ²2

¢
E
¡√
1− ²2

¢ µw
c

(7)
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A relationship can be found between the minor axis c and the aspect ratio from the cross-sectional area,
c =

p
Aε/π. Substituting c into Eq. (7), one finds

τ =
π
√
π
¡
1 + ²2

¢
√
²E
¡√
1− ²2

¢ µw√
A

(8)

It is conventional to use the ratio of area over perimeter Dh = 4A/P, known as the hydraulic diameter, as the
characteristic length scale for non-circular channels. However, as can be seen in Eq. (8), a more appropriate
length scale is the square root of area,

√
A.

With the square root of area
√
A as the characteristic length scale, a non-dimensional wall shear stress

can be defined as:

τ∗ ≡ τ
√
A

µw
=

π
√
π
¡
1 + ²2

¢
√
²E
¡√
1− ²2

¢ (9)

It should be noted that the right hand side of Eq. (9) is only a function of the aspect ratio (geometry) of
the channel.
Using Eq. (8), the Fanning friction factor, defined as f ≡ 2τ/ρw2, for elliptical microchannels becomes

f =
2π
√
π
¡
1 + ²2

¢
√
²E
³p

1− ²2
´ µ

ρw
√
A

(10)

The Reynolds number can be defined based on the square root of area,
√
A, as

Re√A =
ρw
√
A

µ
(11)

Equation (10) becomes

f Re√A =
2π
√
π
¡
1 + ²2

¢
√
² E

³p
1− ²2

´ (12)

Similar to τ∗, fRe√A is only a function of the geometry of the channel. Thus, a relationship can be found
between the non-dimensional friction factor τ∗ and fRe√A

fRe√A = 2τ
∗ (13)

The method described for the elliptical channels, can be applied for other shapes such as rectangular channels.
Therefore, it is left to the reader to follow the steps for other cross-sections. Following the same steps, the
friction factor Reynolds number product based on the square root of the cross-sectional area for rectangular
ducts is:11

fRe√A =
12∙

1− 192
π5
² tanh

³ π
2²

´¸
(1 + ²)

√
²

(14)

The original analytical solution for the mean velocity in rectangular channels is in the form of a series.
However, when ² = 1 (square), the first term of the series gives the value fRe√A = 14.132 compared with
the exact value (full series solution) of 14.23. The maximum difference of approximately 0.7% occurs at
² = 1. For smaller values of ², the agreement with the full series solution is even better.11 Therefore, only
the first term is employed in this study.
Figure 1 shows the comparison of the analytical solutions of fRe√A, for elliptical and rectangular cross-

sections based on hydraulic diameter and the square root of area. As can be seen, the selection of the
square root of area as the characteristic length leads to similar trends in fRe√A for elliptical and rectangular
channels with identical cross-sectional area.
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Figure 1. Comparison between analytical solutions of fRe for elliptical and rectangular ducts using a) hydraulic
diameter and b) square root of area as characteristic length.

Elliptical and rectangular cross-sections cover a wide range of singly-connected microchannels. With
the similarity in the trends of the solutions for these cross-sections, one can conclude that a general, purely
geometrical, relationship may exist that predicts fRe√A for arbitrary singly-connected cross-sections. Based
on this observation, an approximate model is developed in this paper.
Torsion in beams and fully-developed, laminar flow in ducts are similar in the sense that the governing

equation for both problems is Poisson’s equation, Eq. (1). Comparing various singly connected cross-sections,
Saint-Venant 1880 found that the torsional rigidity can be approximated by replacing the given shaft by the
shaft of an elliptic cross-section having the same cross-sectional area and the same polar moment of inertia
as the given shaft.12 Using Saint-Venant’s concept, the present model employs the analytical solution of the
elliptical duct to approximate the pressure drop in ducts of arbitrary cross-section.
The polar moment of inertia, Ip =

R
A

¡
x2 + y2

¢
dA, for an ellipse is

Ip =
πbc

¡
b2 + c2

¢
4

(15)

Equation (5) can be re-arranged in terms of the polar moment of inertia, about its center, as follows:

∆p

L
=
16π2µw

A3
Ip =

16π2µw

A
I∗p (16)

where I∗p = Ip/A
2 is a non-dimensional geometrical parameter which we call the specific polar moment of

inertia. Combining Eqs. (2) and (16), one can write

τ =
16π2µw√

A

√
A

P
I∗p (17)

Note that
√
A/P is also a non-dimensional parameter. Using Eq. (17), the Fanning friction factor can be

determined

f Re√A = 32π
2 I∗p

√
A

P
(18)

The right hand side of Eq. (18) only contains general geometrical characteristics of the cross-section, i.e., Ip,
A, and P. These geometrical parameters can easily be calculated for any conduit (arbitrary cross-section).
Therefore, the proposed model postulates that for constant fluid properties and flow rate in a channel of
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Figure 2. Comparison of present model and experimental data for trapezoidal [5] and rectangular [4,5,14]
microchannels.

fixed cross-section, f Re√A is only a function of the non-dimensional geometrical parameter, I
∗
p

√
A/P, of the

cross-section. To apply the present model, the following steps must be taken:

• find the center of geometry of the cross-section

• calculate geometrical parameters of the channel, i.e., perimeter P , cross-sectional area A, and polar
moment of inertia Ip about the center of geometry, and determine f Re√A using Eq. (18).

Normally to find the friction factor: first Poisson’s equation must be solved (numerically for most cross-
sections) to find the velocity field, then the mean velocity and the mean wall shear stress, and finally fRe√A
must be determined. Applying the present model, on the other hand, one only needs to compute the non
dimensional parameter I∗p

√
A/P of the channel to determine fRe√A. It clearly shows the convenience of the

proposed model.
For more complex cross-sections such as moon-shaped ducts, the geometry often consists of simpler parts

where the moment of inertia is known or easily calculated. The moment of inertia of the complex geometries
about an axis can be found by algebraic sum of the moments of inertia of “simpler” geometries.13

III. Comparison With Experimental Data

In this section, the present model is compared against experimental data collected by several researchers4, 5, 14

for microchannels. The reported accuracy of the experimental data is on the order of 10%.
Wu and Cheng5 conducted experiments and measured the friction factor of laminar flow of deionized

water in a number of smooth silicon microchannels of trapezoidal cross-section over a range of Reynolds
numbers.
The frictional resistance fRe√A is not a function of Reynolds number, i.e., it remains constant for

the laminar regime as the Reynolds number varies. Therefore, the experimental data for each set are
averaged over the laminar region. As a result, for each experimental data set, one value of fRe√A can be
obtained. The microchannels considered by Wu and Cheng5 cover a wide range of geometrical parameters,
i.e., 0.71 ≤ ² ≤ 97.70 and 0 ≤ β ≤ 1 [see Eq. (23)], as a result the data include trapezoidal, triangular,
and rectangular microchannels. Figure 2a shows the comparison between all data of Wu and Cheng5 and
the proposed model. The ±10% bounds of the model are also shown in the plot, to better demonstrate the
agreement between the data and the model.
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Liu and Garimella4 carried out experiments and measured the friction factor in rectangular microchannels.
They did not observe any scale-related phenomena in their experiments and concluded that the conventional
theory can be used to predict the flow behavior in microchannels in the range of dimensions considered.
They4 measured and reported the relative surface roughness of the channels to be negligible, thus their
channels can be considered smooth. Gao et al.14 experimentally investigated laminar fully developed flow in
rectangular microchannels. They designed their experiments to be able to change the height of the channels
tested while the width remained constant at 25 mm. They conducted experiments with several channel
heights. Gao et al.14 measured the roughness of the channel and reported negligible relative roughness, thus
their channels can be considered smooth.
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Figure 3. Geometry and fRe predicted by model for hyperellipse channels for n = 3, 5.5, 10.

Following the same method described for trapezoidal data, the reported values of fRe√A for rectangular
microchannels4, 14 are averaged (over laminar region) and plotted against the model in Fig. 2b. As shown
in Fig. 2b, the collected data cover a wide range of the aspect ratio ε = c/b, almost three decades; also the
relative difference between the data and the model is within the uncertainty of the experiments.

IV. Comparison with Numerical Results

In this section, the present model is compared with numerical results9, 15 for available cross-sections.
Geometrical parameters needed to apply the model for some of the cross-sections are reported for most
geometries. The following relationship is used to convert the Reynolds number Fanning friction factor
product based on Dh to

√
A

fRe√A =
P

4
√
A
fReDh (19)

where Dh = 4A/P is the hydraulic diameter of the channel.

A. Hyperellipse Channel

A hyperellipse, in the first quadrant, is described by y = b [1− (x/a)n]1/n, where a and b are characteristic
dimensions along the x and y axes, respectively, see Fig. 3. The effect of the parameter n on the shape
of the hyperellipse channel is also shown in Fig. 3. When n = 1, the hyperellipse yields a rhombic duct
(a > b), and a square for (a = b); at n = 2, the channel is elliptical (a > b), and circular (a = b) ;n > 3, it is
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a rectangular (a > b) or a square (a = b) channel with rounded corners; and when n→∞, it approaches a
full rectangle/square duct.16 The cross-sectional area of a hyperellipse can be calculated from:

A = 4a2ε

√
πΓ

µ
n+ 1

n

¶
41/nΓ

µ
n+ 2

2n

¶ (20)

where Γ (·) is the gamma function and ε = b/a. The perimeter of the hyperellipse does not have a closed

form solution and must be calculated numerically from, P = 4
R a
0

q
1 + (dy/dx)

2
dx. The polar moment of

inertia of a hyperellipse about its center of geometry (origin) is:

Ip = 4a
4

⎡⎢⎢⎣3ε
3Γ

µ
n+ 1

n

¶
Γ

µ
3

n

¶
+ εΓ

µ
n+ 3

n

¶
Γ

µ
1

n

¶
3nΓ

µ
n+ 4

n

¶
⎤⎥⎥⎦ (21)

It should be noted that the model is based on the analytical solution for elliptical channel which is a

α = b / a

Po
*=

Po
/(

I* p√
A

/P
)
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Figure 4. Comparison between non-dimensional fRe√A predicted by the model and numerical results of Shah
and London [9] for trapezoidal channel.

hyperellipse with n = 2. Also, the maximum difference between the elliptical (n = 2) and rectangular
(n → ∞) ducts analytical solutions is less than 8%. As a result, it can be concluded that the difference
between the f Re√A predicted by the present model and that of a hyperellipse with any other value of
2 ≤ n ≤ ∞ is less than 8%, as shown in Fig. 3. Figure 3 also represents the f Re√A values predicted by the
model for several values of n = 3, 5.5, 10 over aspect ratios 0.01 ≤ ε = b/a ≤ 1.

B. Trapezoidal Channel

Trapezoidal cross-section is an important geometry since some microchannels are manufactured with trape-
zoidal cross-sections as a result of the etching process in silicon wafers. Furthermore, in the limit when the
top side length goes to zero, it yields an isosceles triangle. At the other limit when top and bottom sides are
equal, it becomes rectangle/square. The cross-sectional area, perimeter, and polar moment of inertia (about
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its center) are; A = 4b2², P = 4b
³
²+

p
²2 − β²2 + 1

´
, and

Ip =
A2
£
2
¡
3²2 + 1

¢
+ β

¡
1− 3²2

¢¤
36 ²

(22)

² ≡ 1

α
+

1

tanφ
and β ≡ 1− 1

²2 tan2 φ

where α = b/a. Using Eq. (18), one can find fRe√A:

fRe√A =
8π2

¡
3²2 + 1

¢
+ β

¡
1− 3²2

¢
9
√
²
³
²+

p
²2 − β²2 + 1

´ (23)

Shah and London9 reported numerical values for fReDh
for laminar fully developed flow in a trapezoidal

channel. They presented fReDh
values as a function of α = b/a for different values of angles φ.

Figure 4 shows the comparison between Eq. (23) and the numerical data reported by Shah and London.9

For convenience, the comparison is presented using a non-dimensional form of fRe√A

Po∗ =
f Re√A

I∗p
√
A/P

(24)

Note that based on the model, Po∗ = 32π2 = 315.83, see Fig. 4. Table 1 also shows the comparison between
the approximate model and the numerical data reported by Shah and London.9 As can be seen, except for a
few points, the agreement between the approximate model and the numerical values is reasonable (less than
10%).

C. Rhombic Channel

Cross-sectional area, perimeter, and specific polar moment of inertia of a rhombic duct can be determined
from; A = L2 sinφ, P = 4L , and I∗p = 1/6 sinφ, where L is the side of the rhombic duct. Using Eq.(18),
fRe√A for the rhombic duct becomes

f Re√A =
4π2

3
√
sinφ

(25)
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Figure 5a shows the comparison between numerical results9 and Eq. (25). The maximum difference between
the present model and numerical results is on the order of 8%.

D. Sine Channel

The sine channel is represented by y = b (1 + cosπx/a). The center of geometry, area, and perimeter of a
sine duct can be found from; yc = 3b/4, A = 2ab, and P = 2a + 4aE(π

√
−ε2), respectively. The fRe√A

becomes:

f Re√A = 4
√
2π2

∙
π2 − 6
6π2ε

+
13ε

96

¸ √
ε

1 + 2E
¡
π
√
−ε2

¢
/π

(26)

where E (·) is the complete elliptic integral of the second kind and ε = b/a. Figure 5b shows the comparison
between numerical results from9 and Eq. (26). The model presents the trends of the numerical results with
n difference of 9.3%.

E. Circular Sector Channel

The center of geometry, area, polar moment of inertia, and perimeter of a circular sector duct can be found
from; xc = 2a sinφ/3φ, A = a2φ, Ip = a4

¡
9φ2 − 8 sin2 φ

¢
/18φ, and P = 2a (1 + φ), respectively. The

fRe√A becomes:

f Re√A =
8π2
√
φ
¡
9φ2 − 8 sin2 φ

¢
9φ3 (1 + φ)

(27)

Figure 6a shows the comparison between numerical results from Shah and London9 and Eq. (27). The model
presents the trends of the numerical results with a mean difference of 7.6%.

F. Circular Segment Channel

The cross-sectional area and perimeter of a circular segment duct can be found from; A = a2 (φ− 0.5 sin 2φ)
and P = 2a (φ+ sinφ). The polar moment of inertia about the center of geometry is:

Ip = a
4

"
φ

2
−
sin 2φ

¡
1 + 2 cos2 φ

¢
12

− (2 sinφ− cosφ sin 2φ)
2

9 (φ− 0.5 sin 2φ)

#
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Figure 7. Comparison of model and numerical values [9] for annular sector and rectangular duct with semi-
circular ends.

Figure 6b represents the comparison between the numerical results in Shah and London9 and the present
model. As seen, the present model shows excellent agreement with the numerical result with a maximum
relative difference of 3.1%.

G. Annular Sector Channel

The center of geometry, area, polar moment of inertia, and perimeter of a circular sector duct can be found
from; A = φr20

¡
1− r∗2

¢
and P = 2r0 [(1 + r∗)φ+ 1− r∗]

xc =
2r0 sinφ

3φ

1− r∗3
1− r∗2

I∗p =

1

2

¡
1− r∗4

¢
− 4
9

µ
sinφ

φ

¶2 ¡1− r∗3¢
1− r∗2

2

φ
¡
1− r∗2

¢2
where r∗ = ri/ro. The fRe√A becomes:

f Re√A =

16π2
p
φ (1− r∗2)

"
1

2

¡
1− r∗4

¢
− 4
9

µ
sinφ

φ

¶2 ¡1− r∗3¢
1− r∗2

2
#

φ (1− r∗2)2 [(1 + r∗)φ+ 1− r∗]
(28)

Figure 7a represents the comparison between the numerical results in Shah and London9 and the present
model, Eq. (28). The present model shows good agreement with the numerical results for 2 ≤ φ ≤ 75 degree,
with a maximum relative difference of less than 8%.

H. Rectangular Channel with Semi Circular Ends

The cross-sectional area, perimeter, and polar moment of inertia of a circular sector duct can be found from;
A = a2

£
4ε (1− ε) + πε2/2

¤
and P = 2a (2− 2ε+ πε) and

Ip = a
4

⎡⎣4ε (1− ε)
h
ε2 + (1− ε)

2
i

3
+ ε4

µ
π

4
− 8

9π

¶
+

πε2

2

µ
1− ε+

4ε

3π

¶2⎤⎦ (29)
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Figure 8. Comparison of present model and numerical values for square duct with 2 adjacent round corners
[15] and moon-shaped [9] channels.

Figure 7b represents the comparison between the numerical results of Shah and London9 and the present
model. As seen, the present model shows excellent agreement with the numerical result with a maximum
relative difference of 2.7%.

I. Other Cross-Sections

The present model is also compared with numerical results for square minichannels with two adjacent rounded
corners15 and moon-shaped ducts9 in Fig. 8, with relative differences of 2.5% and 4.8%, respectively.

V. Conclusion

The pressure drop of fully-developed, laminar, single-phase flow in smooth channels of arbitrary cross-
sections is investigated. It is shown that the square root of area

√
A, as the characteristic length scale, is

superior to the conventional hydraulic diameter, Dh. An approximate model is introduced, based on the
analytical solution for an elliptical duct, and compared against experimental and numerical data for several
cross-sections. This “bottom-up” approach clearly shows a common trend in all geometries considered.
The present model is only a function of geometrical parameters of the cross-section, i.e., area, perimeter,

and polar moment of inertia. The proposed model is compared with experimental and numerical results for
channels with cross-sections including: rectangle, triangle, hyperellipse, trapezoid, sine, square duct with
two adjacent round corners, rhombic, circular sector, circular segment, annular sector, rectangular with
semi-circular ends, and moon-shaped. The model successfully predicts the pressure drop for a wide variety
of shapes with a difference on the order of 8%.
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Table 1. MODEL VS DATA [9], TRAPEZOIDAL CHANNELS

fRe√A
a

α∗ fReDh ² β model 9 %dif.
φ=85◦

8 17.474 0.212 0.830 23.384 23.054 1.41
4 16.740 0.337 0.933 18.563 19.325 -4.11
2 15.015 0.587 0.978 14.516 15.587 -7.38

4/3 14.312 0.837 0.989 13.318 14.398 -8.11
1 14.235 1.087 0.994 13.203 14.274 -8.11

3/4 14.576 1.421 0.996 13.774 14.825 -7.63
1/2 15.676 2.087 0.998 15.806 16.770 -6.10
1/4 18.297 4.087 1.000 22.648 23.038 -1.72
1/8 20.599 8.087 1.000 33.804 32.926 2.60

φ=75◦
8 14.907 0.393 0.535 15.745 16.982 -7.85
4 14.959 0.518 0.732 14.725 16.142 -9.62
2 14.340 0.768 0.878 13.499 14.754 -9.30

4/3 14.118 1.018 0.931 13.244 14.365 -8.46
1 14.252 1.268 0.955 13.520 14.576 -7.81

3/4 14.697 1.601 0.972 14.304 15.311 -7.04
1/2 15.804 2.268 0.986 16.430 17.332 -5.49
1/4 18.313 4.268 0.996 23.165 23.505 -1.47
1/8 20.556 8.268 0.999 34.155 33.254 2.64

φ=60◦
8 13.867 0.702 0.324 13.540 15.364 -13.47
4 13.916 0.827 0.513 13.544 15.162 -11.95
2 13.804 1.077 0.713 13.623 14.842 -8.95

4/3 13.888 1.327 0.811 13.953 14.960 -7.21
1 14.151 1.577 0.866 14.484 15.392 -6.26

3/4 14.637 1.911 0.909 15.384 16.230 -5.49
1/2 15.693 2.577 0.950 17.482 18.241 -4.34
1/4 18.053 4.577 0.984 23.908 24.184 -1.15
1/8 20.304 8.577 0.995 34.582 33.735 2.45

φ=45◦
8 13.301 1.125 0.210 14.669 15.921 -8.53
4 13.323 1.250 0.360 14.796 15.874 -7.28
2 13.364 1.500 0.556 15.123 15.899 -5.13

4/3 13.541 1.750 0.673 15.573 16.194 -3.99
1 13.827 2.000 0.750 16.125 16.691 -3.51

3/4 14.260 2.333 0.816 16.973 17.492 -3.06
1/2 15.206 3.000 0.889 18.869 19.377 -2.69
1/4 17.397 5.000 0.960 24.760 24.952 -0.77
1/8 19.743 9.000 0.988 34.958 34.268 1.97

φ=30◦
8 12.760 1.857 0.130 17.923 18.058 -0.75
4 12.782 1.982 0.236 18.013 18.077 -0.35
2 12.875 2.232 0.398 18.277 18.235 0.23

4/3 13.012 2.482 0.513 18.633 18.509 0.66
1 13.246 2.732 0.598 19.062 18.961 0.53

3/4 13.599 3.065 0.681 19.720 19.672 0.25
1/2 14.323 3.732 0.785 21.220 21.249 -0.14
1/4 16.284 5.732 0.909 26.178 26.295 -0.44
1/8 18.479 9.732 0.968 35.489 34.747 2.09
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